Notification Server

Architecture

Fernando Rodriguez Sela
Guillermo Lopez Leal

Notification Server: Architecture

by Fernando Rodriguez Sela and Guillermo Lopez Leal
Copyright © 2012 Telefonica Digital (PDI), All rights reserved.

Table of Contents

R 1 0T U Tox 1 o o 1S UUPPPUPPPN 1

State Of the art ..o 1

Current Internet solutions ISSUESccevvvvviiiiieeeeeeeeeeeiiiiinnn 1

Service DESCHPLIONcii e e e e e 2

Adventages for deVelOpers ... 2

2. Mobile network issues with current PUSH platforms 3

Mobile networks in a Private or Public LANccccoviiiiiiiiiieeee, 3

Mobile Network. Circuit domain statesccccvvvvvviiiiiiieeeiieeeeiinnns 3

Mobile Network. Package domain Statescccceeeeeiiiiiiiiieeeenennn. 5

Mobile Network. States relationcccccvveviiiiiiiinneeeeeeeei e, 5

Mobile Network. Signalling Stormseeeeeeveieiiieiiiiiiiiiieieeeeeeee. 7

Mobile Network. Battery COMSUPLioNccoevviiieeriiiiiiieeeeiiiie e, 7

3. Notification Server APl ... 9

API between WebApp and the User Agentcccoovvviiieereinnnnnnnn. 9

API between the User Agent and the Notification Server 12
API between the Application Server and the Notification Serv-

] PP 20

GENEIIC AP e 20

Simple PUSH API ... 21

API between the WA and the AS ... 21

TOKENS o ———— 22

ChanNElID ..o 22

0 | PSSR 22

eNdPOINTURL ... e 23

WaKEUD .. 23

STALUS ettt 23

Wake up method ... 23

R o T 1 = T = P 25

[. Command referenCecooviiiiiiiiiiii e 27

load_mcc_mnc_onmongo.aWKceeveeeiiiiiiieeciie e, 29

add_WaKEUPSEIVEI D eeeiiiiiiiiiiiiiiiieieieee e 31

(=T 0] 0112 1.4 T0] 5 o [0 33

0HIOgINTO .. 35

List of Tables
2.1. RCC - GMM relationoonienieeee e,

Vi

List of Examples

3.1. Multiple deviCe MESSAQESuuuurrurrurrrrrririierrinrernreeereereeeeneeeneenes

3.2. Message broadcast

vii

viii

Chapter 1. Introduction

Today mobile applications retrieve asynchronously information from mul-
tiple sites. Developers have two ways to retrieve this information:

» Polling: Periodically query the information to the server.

» Push: The server sends the information to the client when the required
information is available.

The first method is strongly discouraged due to the large number of con-
nections made to the server needlessly, because information is not avail-
able and you lose time and resources.

That is why the PUSH methods are widely used for information retrieval,
anyway how PUSH platforms are currently working are misusing mobile
radio resources and also consuming lot of battery.

This article aims to explain how to manage this kind of messaging, prob-
lems with existing solutions and finally how Telefénica Digital, within the
framework of the development of Firefox OS operating system, a new so-
lution designed friendlier to the network and low battery consumption on
mobile terminals.

State of the art

Historically mobile operators offered (and offer) real mechanisms PUSH
notifications, also known as WAP PUSH. WAP PUSH can "wake up" ap-
plications when any action is required of them by the server side (without
interaction from the user). Sending WAP PUSH messages is done in the
domain of circuits, the same used for voice and SMS, and that is why the
user don't need to establish a data connection. These kind messages work
properly out of the box.

WAP PUSH solutions works great when the user is registered in the mobile
network, but if you are out of coverage or connected to a WiFi hotspot
instead a celular network, you can not receive these messages.

Also, if we add that this messages implies an economic cost (basically it
is a short message SMS) the effect is that major smartphone operating
systems (Apple iOS and Google Android) have implemented a parallel
solution that would work regardless of the mobile network to which the
user belongs and it can run smoothly when they are using WiFi networks.

Current Internet solutions issues

Internet PUSH solutions are based on a public accesible server which han-
dles all the notification delivery.

Service Description

These solutions were designed without considering the mobile networks
way of working and forces the handset to maintain an open socket with
the server in order to avoid misnotifications.

This way of working increases the signalling and the handsets battery con-
sume. For more information about this, please refer to the "Mobile network
issues with current PUSH platforms" chapter

Service Description

The Notification Server platform is aimed to deliver push notifications
(small messages like a real-time chat, a JSON data structure defining the
goal of a soccer match) to web based terminals inside mobile networks.

The main objective of this service is to deliver these messages considering
the way of working of the mobile radio so the battery consumption and
traffic generated is reduced to the minimal. It is developed for working on
stable Internet connections, like on Wi-Fi or Ethernet.

Adventages for developers

Since we want a service to be used, we think it to be very easy to use and
to be great for developers.

Now, we point out some adventages with the use of this solution:
» Easy to use API: Based on web technologies.

» Reduce developer deployment consts

* More efficient use of the battery and network resources

* No registration process needed and no subscriptions

» Bigger payloads and more messages per application

Chapter 2. Mobile network issues with
current PUSH platforms

This chapter explains why current solutions are bad for the mobile net-
works and how we designed this server to solve this issues.

In order to understand the complete problem, we need to introduce you
on how the mobile nerworks work at radio level and also how the carriers
have their network infrastructure. So, go ahead !

Mobile networks in a Private or Public LAN

Since on IPv4 the amount of free adresses is really low, celular net-
works were divided into the ones with real IPv4 adresses (normally for 3G
modems) and private adressing model for handsets.

On the case of private networks, it's obvious that it's not possible to directly
notify the handset when the server has a notification for it, so smartphone
manufacturers decided to maintain opened channels with their servers so
it's possible to notify handsets asynchronously.

On the other hand, if the handset has a public address, or is using IPv6,
it's teorically possible to send the message directly making third party so-
lutions unuseful, however in order to protect users, carriers can deploy
firewalls to avoid direct access from Internet to the handset.

Mobile Network. Circuit domain states

In the 3GPP TS 25.331 specification, we can query all the circuit domain
statues of the RRC Layer (Radio Resource Control).

In order to simplify, we only list the third generation (3G) states:

* Cell_DCH (Dedicated Channel)
When the handset is in this state is because it has a dedicated channel
on the mobile network.

Normally the network sets a handsent into this state when it's transmit-
ting a big amount of data.

The inactivity time of this state is really short, known as T1 timer it
should vary between 5 and 20 seconds. If T1 is fired, the handset will
be changed to the Cell FACH state.

* Cell_FACH
In this state the handset is connected to the mobile network using a
shared channel with other handsets.

Mobile Network. Cir-
cuit domain states

Normally, this state is assigned by the network when the handset is
transmitting a small amount of data. So it's common to use it when send-
ing keep-alive packages.

The inactivity time of this state is a little longer (30 seconds) and is konwn
as T2 timer. When T2 timer is shotted, the handset will be moved to
Cell PCH or URA PCH (depending on the type of network)

* Cell_PCH or URA_ PCH (PCH: Paging Channel) (URA: UTRAN Regis-
tration Area)
In this state the handset is not able to send any data except signalling
information in order to be able to localize the handset inside the celullar
network.

In both states, the RRC connection is established and open, but it's
rarely used.

In this state, the handset informs the network every time the device
change from one sector to another so the network is able to known ex-
actly the BTS which is offering service to the device.

The T3 timer defines the maximum time to be in a PCH state. This timer
is longer than T1 and T2 and depends on each carrier. When it's fired the
handset is moved to IDLE mode so if new data transmission is needed
the handset will need near 2 seconds to restablish the channel and a
lot of signalling messages.

* RRC_IDLE
This is the most economical state since the handset radio is practically
stopped.

In this state, the radio is only listening to radio messages quering the
handset to "Wake Up" (paging messages).

Also, the handset modem is listening the cell data so each time it detects
that the user changed from one LAC (Localization Area Code - Group
of multiple BTS) to another, the handset will change to the PCH state
in order to inform the network.

So when a handset is in this state, it can be Waked Up to a more ac-
tive state and also the network knowns the LAC where the handset is
moving, so if the network needs to inform the handset it should send a
broadcast paging message through all the LAC BTS in order to locate
the handset.

The following scheme represent the different radio states ordered by pow-
er comsuption on the device:

Mobile Network. Pack-
age domain states

Mobile Network. Package domain states

In the 3GPP TS 23.060 specification, we can analyse all the package do-

main states of the GMM Layer (GPRS Mobility Management).

The package domain states are simpler than radio ones (only 3 states):

« READY (2G)/ PMM_CONNECTED (3G)

The handset has a PDP context established and is able to send and
receive data.

STANDBY (2G) / PMM_IDLE (3G)
The handset isn't transmitting anything but the PDP context is not
closed, so it maintains a valid IP address.

In this state the handset don't consume any resource but the network
IS maintaining his IP address as a valid one, so it's very important to try
to maintain the handset in this state in order to be able to Wake Up it
and change to a PMM_CONNECTED state in order to transmit/receive
information.

IDLE (2G) / PMM_DETACHED (3G)
In this state, the handset hasn't a PDP context established so it hasn't
a valid IP address.

Mobile Network. States relation

In this section we show the relation between RRC and GMM states.

In order to simplify this table, we only consider the handset is only using
data channels, so no voice nor SMS (circuit domain) is being used.

Table 2.1. RCC - GMM relation

RCC State GMM State (2G/3G) |Description

Cell_ DCH READY/ The handset is trans-
PMM_CONNECTED |miting or receiving da-
ta information using a
dedicated channel or a
HSPA shared channel.

Cell FACH READY/ The handset had been
PMM_CONNECTED |transmiting or receiv-
ing data some seconds
ago and due to inactiv-
ity had been moved to

RCC State GMM State (2G/3G) |Description

Mobile Network.
States relation

RCC State

GMM State (2G/3G)

Description

the Cell FACH RCC
state.

Also it's possible that
the handset is transmit-
ing or receiving small
amount of data like
pings, keep-alives, cell
updates,...

Cell PCH/URA_PCH

READY/
PMM_CONNECTED

The handset had been
in Cell_FACH some
seconds ago and due
to inactivity had been
moved to this less re-
source consume state.

However, the signalling
channel is available
and is able to change
to a data transmis-
sion state like FACH

or DCH with a little
amount of signalling.

Cell PCH/URA_PCH

STANDBY/PMM_IDLE

The handset is not
transmiting nor receiv-
ing any amount of data
and also the signalling
connection is closed.

However the IP ad-

dress is maintained by
the network and asso-
ciated to this handset.

This is one of the most
interesting states since
the PDP context is not
closed, the IP address
is still valid and the
handset is not consum-
ing baterry, network
traffic,...

RCC State

GMM State (2G/3G)

Description

Mobile Network.
Signalling storms

RCC State GMM State (2G/3G) |Description

As soon as the hand-
set needs to restab-
lish the data channel
the radio state will be
changed to FACH or
DCH.

RRC_IDLE STANDBY/PMM _IDLE |This state is the same
as the previous one
since the radio state is
IDLE.

RRC_IDLE IDLE/ The handset is not
PMM_DETACHED transmitting nor receiv-
ing anything and also
it hasn't any PDP con-
text established, so no
IP address is available
for this handset.

Normally this state is
after 24h of innactivity
in the package domain.

RCC State GMM State (2G/3G) |Description

Mobile Network. Signalling storms

This is a carrier well-know effect after the big adoption of smartphones
around the word.

As we explained in previous sections, each time the network decides to
move a handset from one state to another is needed to restablish channels
and starts a negotiation between the network and the handset with the
signalling protocol.

Since nowadays handsets are sending keep-alives to maintain their con-
nections opened, the efect is that the handsets is continously changing
from one state to another producing a lot of signalling in the network and
also consumes a lot of battery resources.

Mobile Network. Battery comsuption

The battery comsuption depends on the Radio state. The following list rep-
resent the amount of battery needed on each state represented in relative
units:

* RRC IDLE: 1 relative unit

Mobile Network.
Battery comsuption

Cell PCH: < 2 relative unit
URA_PCH: < or equal than Cell_PCH
Cell _FACH: 40 relative units

Cell_DCH: 100 relative units

Chapter 3. Notification server API

The Notification Server APl is based on the W3C draft: [http://dvcs.w3.org/
hg/push/raw-file/default/index.html] [http://dvcs.w3.org/hg/push/raw-file/
default/index.html]

In order to understand this chapter, we'll present the different actors:

* WebApp (WA):
The user's applications which is normally executed on the user device.

» User Agent (UA):
Since this protocol born under the Firefox OS umbrella the "operating
system" layer is known as the User Agent layer, in our case is the Gecko
engine.

* Notification Server (NS):
Centralized infrastructure of the notification server platform. This one
can be freely deployed by anyone since it's open source: [https://
github.com/telefonicaid/notification_server] [https://github.com/telefon-
icaid/notification_server]. The protocol also allows to use any server in-
frastructure the user wants

» Application server (AS):
The WA server side. Normally the applications that runs on a mobile
device use one or more Internet servers.

Some of them will be deployed by the same developer as the client
application.

In our case, this server will be the one which send the notification to his
clients/users.

The following sequence diagram shows a tipical message flow between
actors:

APl between WebApp and the User Agent

This API is mainly based on the W3C draft as specified in [http://
dvcs.w3.org/hg/push/raw-file/default/index.html] [http://dvcs.w3.org/hg/
push/raw-file/default/index.html]

Also there is more information about Simple PUSH API here:
[https://wiki.mozilla.org/WebAPI/SimplePush] [https://wiki.mozilla.org/
WebAPI/SimplePush]

http://dvcs.w3.org/hg/push/raw-file/default/index.html
http://dvcs.w3.org/hg/push/raw-file/default/index.html
http://dvcs.w3.org/hg/push/raw-file/default/index.html
http://dvcs.w3.org/hg/push/raw-file/default/index.html
https://github.com/telefonicaid/notification_server
https://github.com/telefonicaid/notification_server
https://github.com/telefonicaid/notification_server
https://github.com/telefonicaid/notification_server
http://dvcs.w3.org/hg/push/raw-file/default/index.html
http://dvcs.w3.org/hg/push/raw-file/default/index.html
http://dvcs.w3.org/hg/push/raw-file/default/index.html
http://dvcs.w3.org/hg/push/raw-file/default/index.html
https://wiki.mozilla.org/WebAPI/SimplePush
https://wiki.mozilla.org/WebAPI/SimplePush
https://wiki.mozilla.org/WebAPI/SimplePush

API between WebApp
and the User Agent

With this API the application is able to register notification channels itself
into the Notification Server and recover the public URL to be used as the
notification endpointURL by his Application Server (AS).

This API (under the navigator.push object) defines these methods:
* register
e unregister

* registrations

navigator.push.register

This method allows the application to register a new channel.

navi gat or. push. regi ster ()

Finally this method will response asynchronously with the URL to be sent
to the AS in order to be able to send notifications.

var req = navigator.push.register();

req. onsuccess = function(e) {

alert("Received URL: " + req.result.pushEndpoint);

b

reg.onerror = function(e) {
alert("Error registering app");

}

navigator.push.unregister

This method allows the application to unregister a previously registered
channel.

navi gat or . push. unr egi st er (endPoi nt URL) ;

After register the application into the Notification Server, all received notifi-
cation through the given URL will be delivered to the WA registered chan-
nel.

Since the notifications will be received by the UA it's needed a way to
notify each application. The current specification is using the new System
Messages infrastructure defined in FirefoxOS.

10

API between WebApp
and the User Agent

In this case, the application shall register to the "push-notification” event
handler:

navi gat or . nnzSet MessageHandl| er (" push”, function(nmsg) ({
al ert ("New Message with body: " + JSON. stringify(nsg));

1),

Inside the msg you'll receive the pushEndpoint URL so an app can regis-
ter as many channels as it wants and with this attribute has a chance to
differenciate one from another.

The complete example:

11

API between the
User Agent and the

Natifinatinan CArmiar

var emai | Endpoi nt, i nmEndpoi nt;

/1 The user has logged in, nows a good time to register the channels
My AppFr amewor k. addEvent Li st ener (" user-1login', function() ({
set upAppRegi strations();

1)

function setupAppRegi strations() ({

/1 lssue a register() call

[/l to register to listen for a notification,
/1 you sinmply call push.register

/1l Here, we'll register a channel for "email" updates.
/1l Channel s can be for anything the app would like to get notifications for.
var regEmail = navigator. push.register();

reqEmai | . onsuccess = function(e) {
emai | Endpoi nt = e.target.result. pushEndpoi nt;
st oreOnAppServer ("emai | ", email Endpoint); // This is the "Hand wavey" way that t|
/1 sends the endPoi nt back to the AppS

}

/1 We'll also register a second channel for "im', because we're social and all abol
var reglm = navigator. push.register();
reql m onsuccess = function(e) {
i MEndpoi nt = e.target.result.pushEndpoint;
st or eOnAppServer ("im', inEndpoint);

}
}
/1l Once we've registered, the AppServer can send version pings to the EndPoint.
/1 This will trigger a 'push' message to be sent to this handl er.
navi gat or . nnzSet MessageHand| er (' push', function handl ePushMessage(message) ({
i f (message. pushEndpoi nt == emai | Endpoi nt) /1 Yay! New Emmil! Steve and bl ue cal
get NewErai | MessagesFr omAppSer ver (nessage. ver si on) ;
el se i f (nmessage. pushEndpoi nt == inEndpoint) // Yay! An IMawaits| | wonder if it'
get NewChat MessagesFr omAppSer ver () ;
1)

/1 to unregister, you sinply call..

AppFr amewor k. addEvent Li st ener (' user-logout', function() {
navi gat or . push. unr egi st er (enai | Endpoi nt) ;
navi gat or . push. unr egi st er (i mEndpoi nt) ;

1)

APl between the User Agent and the Notifica-
tion Server

With this API the client device is able to register his applications and itself
into the selected notification server.

This API isn't yet standarised, anyway the one explained here is an on
working proposal.

The UA-NS API is divided in two transport protocols:

12

API between the

some information about server status.

* WebSocket API: This is the most important one since all the communi-
cations with the NS SHALL be driven through this API.
On future releases will be supported another channels as Long-Polling
solutions in order to cover devices which don't support Web Sockets.

HTTP API
This channel only offers one method to get server information.
about

This method responds an HTML page with general information about the
running server like number of connections, number of process running...

status

This method is used to check if the server is available or not. Is designed
to be used by load balancers when the server is under maintance.

The server will responde 200 (OK) if the server is enabled or 503 (Under
Maintance).

To set the server into maintance mode (tell the load balancer that the serv-
er is not available) is needed to send a SIGUSRL1 signal to the proccess:

kill -SIGUSRL <pid>

To set the server into normal mode (tell the load balancer that the server
is available) is needed to send a SIGUSR2 signal to the proccess:

kill -SIGUSR2 <pid>

WebSocket API

Through this channel the device will register itself, his applications, and
also will be used to deliver PUSH notifications

The websocket API supports multiple subprotocols identified each one
with it's name:

* push-notification

13

API between the
User Agent and the

here: [https://wiki.mozilla.org/WebAPI/SimplePush/Protocol] [https:/
wiki.mozilla.org/WebAPI/SimplePush/Protocol].

* push-notification-binary
Binary version of the push-notification protocol

* push-extended-notification
Telefonica extended solution which provides more functionalities

WebSocket: push-notification

hello

Also know as "Simple push protocol” and defined by Mozilla and Telefon-
ica.

This protocol is based in the Thialfi proto-
col [http://static.googleusercontent.com/external _content/untrusted_dlcp/
research.google.com/en/us/pubs/archive/37474.pdf]. described by
Google.

Also you can read more about this protocol in the Mozilla Wiki: [https://
wiki.mozilla.org/WebAPI/SimplePush/Protocol] [https://wiki.mozilla.org/
WebAPI1/SimplePush/Protocol].

In order to use this subprotocol, the "push-notification” string shall be sent
into the websocket handsake headers.

All methods sent through this channel will have the same JSON structure:

{

nessageType: "“<type of nessage>",
. other data ...

In which messageType defines one of these commands:

With this method the device is able to register itself.

The device is responsible to give the server a valid UAID. If the provided
UAID is not valid or is "null", the server will respond with a valid one.

In next connections the UAID given by the server SHALL be used.

When a device is registering to a notification server, it SHALL send his own
valid UAID and also the device can send additional information that can
be used to optimize the way the messages will be delivered to this device.

14

https://wiki.mozilla.org/WebAPI/SimplePush/Protocol
https://wiki.mozilla.org/WebAPI/SimplePush/Protocol
https://wiki.mozilla.org/WebAPI/SimplePush/Protocol
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/pubs/archive/37474.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/pubs/archive/37474.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/pubs/archive/37474.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/pubs/archive/37474.pdf
https://wiki.mozilla.org/WebAPI/SimplePush/Protocol
https://wiki.mozilla.org/WebAPI/SimplePush/Protocol
https://wiki.mozilla.org/WebAPI/SimplePush/Protocol
https://wiki.mozilla.org/WebAPI/SimplePush/Protocol

API between the
User Agent and the

a way to recover channels after a server crash.

messageType: "hell 0",
uai d: "<a valid UAToken>",
channel IDs: [<a list of channels to sync [OPTI ONAL] >],
wakeup_host port: {
ip: "<current device |P address>",
port: "<TCP or UDP port in which the device is waiting for wake up
}
nmobi | enet wor k: {
ncc: "<Mobile Country Code>",
mc: "<Mobil e Network Code>"

}
}

notificati

The wakeup_hostport and mobilenetwork optional data will be used by the
server to identify if it has the required infrastructure into the user's mobile
network in order to send wakeup messages to the IP and port indicated in
the wakeup_hostport data so it's able to close the WebSocket channel to
reduce signalling and battery consume.

The channellDs array is sent by the client in order to synchronize server
and client.

When the server receives a new hello message and the UAID provided by
the client is a valid one (in other words, is the same returned to the client)
the channellDs list will be used to syncronize the server information with
the client one.

For example, after a server crash, all client channels will be recovered with
this simple method.

Another example, if the client uninstalled an app when the handset was
offline, next time it connects will send tne channel list with one less, so the
server will unregister this channel.

The server response can be one of these:

{
nessageType: "hello",
uaid: "<a valid UAI D>",
status: 200

}

15

API between the
User Agent and the

register

nessageType: "hell 0",
uai d: "<a valid UAl D>"
status: 201

}

if it's connected to a wakeup channel (UDP).

Note

This hello response differenciation is pending to change in or-
der to use Websocket close status: on this Github Pull Request
[https://github.com/telefonicaid/notification_server/issues/178].

{
nmessageType: "hell 0",
stat us: 4xx,
reason: "<any reason>"

}

on any error case, like:
» 460: Error registering UAID

This method is also used to anounce a new IP address or a network
change.

This method is used to register push channels. Each application can reg-
ister as many channels as it wants. Each channel maintains an indepen-
dent counter about the last version of the channel.

This shall be send to the notification server after a valid UA registration.

Normally, this method will be used each time an application requires a new
channel to receive Thialfi like notifications. A new endpoint URL will be
delivered (through the WA-UA API).

No data is required at application level, only the UA client is responsible
to generate a unique channellD for the handset. The channellD can be
the same in different devices since the UAID will be used in the endpoint
URL hash.

16

https://github.com/telefonicaid/notification_server/issues/178
https://github.com/telefonicaid/notification_server/issues/178

API between the
User Agent and the

Natifinatinn CAanriar

{

messageType: "register"”,
channel I D "<a new channel | D>"

}

The server response can be:

nmessageType: "register",

status: 200,

pushEndpoi nt: "<publicURL required to send notifications>",
channel | D: "<t he channel | D>"

nmessageType: "register",
status: 4xx,
reason: "<any reason>"

on any error case, like:
» 457: Not valid channellD

» 408: Server is not ready yet

The device service should redirect the received URL to the correct appli-

cation.

unregister

This method is used to unregister a push channel.

This shall be send to the notification server after a valid UA registration.

{

messageType: "unregister",
channel I D: "<a new channel | D>"

}

The server response can be:

17

API between the
User Agent and the

Natifinatinn CAanriar

messageType: "register"”,
channel | D. "<a new channel | D>"
status: 202

nessageType: "register",
status: 4xx,
reason: "<any reason>"

on any error case, like:

» 408: Server is not ready yet

notification

This message will be used by the server to inform about new notification
to the device.

All recieved notification(s) will have this structure:

{
nmessageType: "notification",
updates: [
{
channel | D: "<channel | D>",
versi on: "<versi onNunber >"
b,
{
channel | D: "<channel | D>",
versi on: "<versi onNunber >"
b,
]
}

On updates list, is returned all the list of pending notifications (last version
of each channel)

desktop-notification

This message will be used by the server to inform about new desktop
notification to the device.

18

API between the

ack

All recieved notification(s) will have this structure:

{

nmessageType: "desktopNotification",
updates: [

channel | D: "<channel | D>",
_internal _id: "<id>",
body: "<sone text>"

H
{

channel | D: "<channel | D>",
_internal _id: "<id>",
body: "<sone text>"

H

On updates list, is returned all the list of pending notifications (last version
of each channel)

For each received notification through notification, the server SHOULD be
notified in order to free resources related to this notifications.

This message is used to acknoledge the message reception.

{

nessageType: "ack",
updates: [
{
channel | D: "<channel | D>",
versi on: "<versi onNunber >"

channel | D: "<channel | D>",
ver si on: "<versi onNunber >"

Keep-alive algorithm

If it's needed a way to maintaint the socket open along time, a PING-PONG
mechanism is also implemented.

19

API between the Ap-
plication Server and

cations).

Wakeup websocket close

As explained before, when the client informs about the mobile network is
in and the server has the required infrastructure in that mobile network, the
websocket will be closed by the server after a predefined inactivity time
(10 seconds).

When this timer fires, the websocket will be closed with the 4774 status
code.

[WebSocket protocol] [http://tools.ietf.org/html/rfc6455#page-45].

APl between the Application Server and the
Notification Server

This chapter explains the different APIs available to third party servers

Generic API

about

status

This method responds an HTML page with general information about the
running server like number of connections, number of process running...

This method is used to check if the server is available or not. Is designed
to be used by load balancers when the server is under maintance.

The server will responde 200 (OK) if the server is enabled or 503 (Under
Maintance).

To set the server into maintance mode (tell the load balancer that the serv-
er is not available) is needed to send a SIGUSRL1 signal to the proccess:

kill -SIGUSRL <pi d>

To set the server into normal mode (tell the load balancer that the server
is available) is needed to send a SIGUSR2 signal to the proccess:

20

http://tools.ietf.org/html/rfc6455#page-45
http://tools.ietf.org/html/rfc6455#page-45

Simple PUSH AP

kill -SIGUSR2 <pid>

Simple PUSH API

With this API the Application server is able to update version number to
specified channel.

This is a simple HTTP API (PUT method).

This version accepts only one HTTP PUT method used to update version
number of a channel. The following payload SHALL be POSTED to the
endpointURL: htt ps://server: port/vl/ notify/ SOVE_RANDOM TOKEN

ver si on=<ver si on_nunber >

and for desktop notifications:

body=<any text>[& tl=<ttl|>]

The server response can be one of the following:
« STATUS: 200

* STATUS: 404 = Channel not found

» STATUS: 404 = Bad body received

« STATUS: 404 = Bad version received

APl between the WA and the AS

This is a third party APl which is independent of the PUSH protocol, so it's
out of the scope of this document.

Anyway, through this API the publicURL received by the application should
be send to his server.

Also this channel could be used to receive valid WATokens to be used
during the WA registration.

21

Tokens

Tokens

The tokens are an important part of this API since it identifies each (user)
actor (device and applications) in a unique or shared way.

channellD

UAID

This token identifies the user or group of users and on extended API
SHALL be a secret but in simple push API (thialfi like) it's not needed to
be a secret.

If this token is UNIQUE (and secret, of course) will identify a unique in-
stance of the application related (normally) to one user. In this case the
returned URL will be unique for this channellD. On simple push, each de-
vice with same channellD will receive a unique endpointURL.

If this token is shared by different devices of the SAME user (and secret),
will identify a unique user with multiple devices. In this case, the returned
URL will be unique per user but each URL will identify multiple devices
the user is using.

Example 3.1. Multiple device messages

This can be used by applications in which the user require the same infor-
mation across his devices, like the mobile and the desktop app. Can be
used, for example, by e-mail clients.

Finally, if a developer decides to deliver the same WAToken to all his users
(in this cases is obviously not a secret one), then the returned URL will
identify all instances of the same application. In this case each notifica-
tion received in the publicURL will be delivered to ALL the devices which
have the application installed (and registered). This will be a BROADCAST
message.

Example 3.2. Message broadcast

This can be used by applications in which all users require exactly
the same information at the same time, like weather applications, latest
news, ...

This token identifies each customer device in a unique way.

This token is also used as an identification key since this isn't a random
one. This token is an AES encrypted string which will be checked for val-
idaty each time it's used.

22

endpointURL

endpointURL

Automatic generated token by the notification server which identifies the
application + user/device as in a unique fashion.

This token is included in the publicURL which identifies the application, and
normally is a SHA256 hashed string with the WATokent + the Public Key.

WakeUp

When the handset is inside a mobile operator network, we can close the
websocket to reduce battery comsuption and also network resources.

So, when the NS has messages to the WA installed on a concrete UA it
will send a UDP Datagram to the handset.

When the mobile receives this datagram, it SHALL connect to the web-
socket interfaces in order to pull all pending messages.

The WakeUp server offers a simple HTTP API:

status

This method is used to check if the server is available or not. Is designed
to be used by load balancers when the server is under maintance.

The server will responde 200 (OK) if the server is enabled or 503 (Under
Maintance).

To set the server into maintance mode (tell the load balancer that the serv-
er is not available) is needed to send a SIGUSRL1 signal to the proccess:

kill -SIGUSRL <pi d>

To set the server into normal mode (tell the load balancer that the server
is available) is needed to send a SIGUSR2 signal to the proccess:

kill -SlIGUSR2 <pi d>

Wake up method

To wakeup a device, senta HTTP GET method to the WakeUp server with
the ip and port parameters. The protocol is optional:

23

Wake up method

http(s)://server:port/?
ip=1.2.3.4&port=5678&protocol=[PROTOCOL_TCPv4 |
PROTOCOL_UDPV4]

ip and port are mandatory and refers to the device ip and port where the
Wakeup agent is listening.

protocol is optional (by default UDPv4 is used) the numeric values:
PROTOCOL_UDPv4 =1

PROTOCOL_TCPv4 = 2

24

Chapter 4. Log traces

This chapter describes each log message, his ID and how to interpret it.

It covers NOTIFY, ERROR and CRITICAL traces. DEBUG and INFO
traces are not documented.

Next sections describes each log level:
<xi:include></xi:include>
<xi:include></xi:include>
<xi:include></xi:include>

25

26

Command reference

Table of Contents

load_mcc_mnc_onmongo.awk
add_wakeupserver_ip
empty_mongo
getloginfo

27

28

Name

load_mcc_mnc_onmongo — loads a mobile operator list into the central
MongoDB

Synopsis
awk -f scripts/load_ncc_mc_onnongo. ank [mcc_mnc_list.txt]

Description

Reads the mcc_mnc_list.txt file and loads all the mobile operators list into
the central MongoDB database.

This command should only be used for the first system provision.

29

30

Name
add_wakeupserver_ip.sh — links a wakeup server IP and Port to a MCC-
MNC pair

Synopsis
scri pt s/ add_wakeupser ver _i p. sh [mcc] [mnc] [wakeup server URL]

Description

Updates the operators collection linking a WakeUp server to the mcc-mnc
pair.

This command should only be used each time the WakeUp server address
is changed.

It's important to note that the MNC SHALL be 2 digits and MCC 3 digits.
Fill with Os if necessary

With an empty URL into the third parameter, the WakeUp server will be
disabled into next runnings

Example
Enabling:
scripts/add_wakeupserver_ip.sh 214 07 http://1.2.3.4:4567
Disabling:

scripts/add_wakeupserver_ip.sh 214 07

31

32

Name
empty_mongo.sh — simple script to clean all MongoDB collections

Synopsis
scri pts/ enpty_nongo. sh
Description

Drops all notification server collections from the MongoDB.

Use it if you really know what're you doing.

Example

scripts/empty_mongo.sh

33

34

Name
getloginfo — shows the detailed log trace description

Synopsis
scri pt s/ getl ogi nfo [log ID (in hexadecimal OXABCD)]
Description

When the server emits a NOTIFICATION, ERROR or CRITICAL trace, you
can see a unique ID in it.

This command allows you to recover more information about the error with-
out need to refer the main document.

Example

scripts/getloginfo 0x1234

35

36

	Notification Server
	Table of Contents
	Chapter 1. Introduction
	State of the art
	Current Internet solutions issues

	Service Description
	Adventages for developers

	Chapter 2. Mobile network issues with current PUSH platforms
	Mobile networks in a Private or Public LAN
	Mobile Network. Circuit domain states
	Mobile Network. Package domain states
	Mobile Network. States relation
	Mobile Network. Signalling storms
	Mobile Network. Battery comsuption

	Chapter 3. Notification server API
	API between WebApp and the User Agent
	navigator.push.register
	navigator.push.unregister

	API between the User Agent and the Notification Server
	HTTP API
	about
	status

	WebSocket API
	WebSocket: push-notification
	hello
	register
	unregister
	notification
	desktop-notification
	ack
	Keep-alive algorithm
	Wakeup websocket close

	API between the Application Server and the Notification Server
	Generic API
	about
	status

	Simple PUSH API

	API between the WA and the AS
	Tokens
	channelID
	UAID
	endpointURL

	WakeUp
	status
	Wake up method

	Chapter 4. Log traces
	Command reference
	load_mcc_mnc_onmongo.awk
	add_wakeupserver_ip
	empty_mongo
	getloginfo

